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CONVEXITY CONDITIONS RELATED WITH 1/2 ESTIMATE
IN BOUNDARY PROBLEMS WITH SIMPLE
CHARACTERISTICS. II

MASATAKE KURANISHI

Choose a submanifold (not necessarily closed) .4 of $*U, which is transversal
to C* and intersects C*? only at (x°, £*(x?)). Pick a nonzero u in W4(x°, {{(x%) =
the image of pl(x?, £(x%)). Then the function

fulx, &) = la(x, Hpi(x, Hul’

viewed as a function on ¢ is of class C* and nonnegative, and (x°, £*(x")) is
its isolated zero, i.e., an isolated critical point of f, on /™.

Definition 2.3. Assume that the characteristics of 4 is smooth. We say
that a characteristic (x°, £X(x")) of A4 is nondegenerate if and only if (x°, {{(x%)
is @ nondegenerate critical point of f, on 4™ for all nonzero u in WH(x®, L3(x")).
We say that the characteristics of 4 are nondegenerate when each characteristic
is so.

Since f, on .t takes the minimum value at (x°, £4(x%)), the above condition
means that the Hessian of f, on A4 at (x°, £*(x") is positive definite. In terms
of a chart (6,, - - -, 8;) of 4 with center (x*, £*(x")), this means that the k X k-
matrix (3%,/96,06,) (0) is positive definite. If (x°, £*(x%)) is nondegenerate for a
choice of a pair of 4™ and a local trivialization of E, it is also so for any other
such choice. We can check this by writing down how f, and its Hessian change
when we make a different choice. Note on this connection that a(x®, {*(x%)
-0i(x% C(x%) = 0.

Because of (9) and (10), {(w, (C*(xD) + p/(1 + 1xPHH; we N* and y | T'(xD}
forms a submanifold {* as above. Hence by (11) and (15), the nondegeneracy
condition means that F*(x°; w, y) | W*(x°, £*(x") is injective for all w ¢ T (N* and
x | &4x"). Thus we have

Proposition 2.1. Assume that the characteristics of A are smooth and the
projection C* — 'C* is bijective, and further that (x°, L(x")) is a nondegenerate
characteristic. Then F'(x°; w,y), restricted to W(X°, Z{(x"), is injective for
sufficiently small w e N* and any y | C{x%) provided (w,y) + 0.

Lemma 2.8. Under the assumptions in Proposition 2.1, for any ¢ > 0 we
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can find 8, > O satisfying the following condition: For any 8, > § > 0 there
is C, . such that

ALK (x, Dyu, uy + C QM) = —eflully

forall ue Cy(U,U X L), provided we choose U sufficiently small and ¢* with
its support sufficiently close to C*.

Proof. By Proposition 2.1, F(y; w,y) on Wi(y, £ (y)) is injective when
(w,y) # 0and y | ¢ y) provided |y| and |w| are sufficiently small. On the
other hand, Hi(x, &) is of order at least 3 in (w, y(x, £&)). Hence for any § > 0
there is 6(e) > 0 such that

GFY y; wlC), £, 0*F(r; w8, &, 0 + Hilx, Hu,uy >0 ,

where ¥ = y(y, &) for all nonzero u ¢ W(y, £(y)) provided |y{, |w| and |&["'x(y, &)
are less than 8(e). Since W(y, {X(y)) is the image of pi(y, §), we see by (22) that

(K (x, Su,uy > 0

for all u ¢ L,, provided we choose U sufficiently small and ¢* with its support
sufficiently close to C*. Hence by Theorem 1.4,

<K§Z('x9 D)uy u> 2 _<L(-x7 D)Ll, u> s

where

L(x,8) = 3 (1 + [§D*a,,0°Kix, &) /35,06,
+ (1 + [E€M)71h;,0°Kifx, &) /0x,0x; + terms of lower orders,

and a;, b;, are given in (12) of § 1. By (22) and (23) we see easily that each
component of the matrices 3*°K%(x, &)/06,;05, and 3°K}(x, £)/dx,0x; can be
written as ¢*(x, £)%(5t(x, &) + h(x, §)) + s(x, &), where ¢ and 4 are independent
of the choice of ¢* and Supp s(x, £) does not touch the characteristics. More-
over, h(x, &) is of order at least 1 in wy, -« -, Wy_y, 12X, &), + + +, xn_s(x, &). Thus
we can suppose that |@*(x, £)*(Gt(x, &) + A(x,§))|/|&| is as small as we wish,
when & and U are sufficiently small and Supp ¢*(x, §) is sufficiently close to C*.
From this together with Lemma 2.3, we therefore see that

| ZL{L(x, DYu, uy| < e(ufly)’ + COW) .

Hence Z{K},(x, D)u, uy + COu) > —e(jull)’. g.e.d.

By Lemmas 2.7 and 2.8, we have

Lemma 2.9. Under the assumptions in Lemma 2.8, for any ¢ > 0 we can
find &, such that for any 8, > 6 > 0 we have

C..0W) + ellulf > (1 — & | F{g'(x, D)pi(x, D)}julf weCs(U,U XLy,
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provided C, ; is sufficiently large, U is sufficiently small, and Supp ¢* is suffi-
ciently close to C*.

We further reduce the problem to a case of a differential operator with
constant coefficient in w(¢Ay), D> and y(x, D).

Lemma 2.10. Under the assumptions in Proposition 2.1, for any ¢ > 0 we
can find 3, such that for any 0 < 8 < 8, we have the following: If U is suffi-
ciently small and Supp ¢* is sufficiently close to C*, then

| FA(y; w(€*(®), D), x(y, D){¢*(x, D)pi(x, D)}ul?
— (1 — »)|FH0; w(C(y), D, x(y, D) ¢'(x, D)pi(x, D)}u|!
> efull} — Cllul® — | R(x, Dyul|?
for all ue C3(U,U X L)), where R(x, &) depends on ¢*, is of order 1, and

Supp R is outside of the characteristics.
Proof. By Proposition 2.1 there is a constant ¢ > 0 such that

|FA(y; w, pul” > c(wf + [xPuf,

provided y,w are sufficiently small, y | {*(y), and u/|u| is in a sufficiently
small neighborhood of W(x°, {*(x")). Since F*(y; w, y) is linear in w and y, it
follows

[ (x, F(y; wll' (), &, x(y, ENpi(x, Huf
> (W&, & + 1200, & Pe'(x, £)?| pilx, E)uf

for all ue L, and x ¢ U, provided U is sufficiently small and Supp ¢* is suffi-
ciently close to C*. For any ¢, > 0 we may also assume that U is so small that

1P (s w, Qul? — [FO; w, pul| < e((Wl + [xP)jul .
Set
G(x, &) = Py; w&'(, 6. 20, 6)) »
Gy(x, &) = FH0; wll'(1), &, x(», &) -
Then .
‘G(x’ S)SDI(X, S)pi(-xy S)ulz - (1 - 5) | Go(-xa 8)901(x9 S)p{(xa S)u|2
= (SIG(.X, S)SDZ(X: S)Pf(-x, S)ulz

+ (1 = ) G(x, HP'(x, Hpi(x, Huf — |Gy(x, )p(x, §)pilx, Huf)
= (8¢ — (1 — D)’ (x, (WD, EF + 14y, P [pilx, Huf .

For a given § > 0 we choose ¢ so small that dc — (1 — 8)e;, > 0. Then
{gMx, EYI(x, E)u, uy > 0, where
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J(-xs S) = pi(x: S)(G(xs S)*G(X, S) - (1 - 5)G0(x’ S)*Go(xa S))Pi(x: &) .
Hence by Theorem 1.4,

HeHx, DY (x, D)y, 1> > — R{L(x, D)u, &> ,

where
L(x, &) = ¢(x, &) Z;:c G+ |&Dta;0°T(x, £) /08,06,

+ (1 + [§)78h;,0° (x, §) [ 0x,;0x) + Ri(x, §)
+ terms of lower orders,

where R/(x, ) is a sum of terms containing derivatives of ¢%(x, &) and hence
its support does not touch the characteristics. By (12) of § 1, we may choose
g(x) in Theorem 1.4 in such a way that the absolute value of each component
of the matrix 3] (1 + |§")74b;,0%) (x, §) /9x,;0x, is less than & |&|. 3°J(x, §) /5,055,
is a sum of terms which contain as a factor G(x, £)*G(x, &) — (1 — 3)Gy(x, &*
-Gy(x, &) or its partial derivatives in &. Since these partial derivatives can enter
only through partial derivatives of (), &> or of y(y, §), each term contains
a factor of the form (a(y) — (1 — 8)a(0))b(x, £), so that if we choose 6 and U
sufficiently small, its absolute value can be made to be less than ¢'{&|. Thus for
any ¢ > 0 we find for a sufficiently small choice of ¢/, §, and U that

| {¢*(x, DY'L(x, D)}u, uy| < ellulf + |[<R\(x, D)u, up|
for all ue Cy(U, U x L,). Therefore

1P (s wC'(¥), D), x(y, D)){¢'(x, D)pix, D)}u?
— (1 — | FHO; w3, DY, x(y, DN)¢*(x, D)pi(x, D)}uff?
= ({¢(x, DYJ(x, D)} + B(x, D))u, uy
> (B(x,D)u, up — eflulf — KR(x, D)u, ] ,

where B(x, &) is of order 1 and can be calculated by means of the formula for
the symbols of compositions and adjoints of pseudo-differential operators.
Hence it remains to show that we may assume

(26) | ZB(x, Dyu, uy| < ellul + [<Ry(x, Du, p| + [<Toits 31,

where R,(x, &) is of order < 1 and does not touch the characteristics. We see
easily that each term of the 1st order part of B(x, &) contains either ¢*(x, §)°
W8 W), £, oHx, EYy(y, &), a factor of the form (a(y) — (1 — 8)a(0)), or a
derivative of ¢*(x, &). The sum of the terms of the last type is R(x, §). We may
assume that the absolute values of other terms are less than ¢’|&]. Hence for a
sufficiently small choice of ¢’ we have the formula (26). q.e.d.
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By Lemmas 2.9 and 2.3 we have the following:
Proposition 2.2. Assume that the characteristics of A are smooth, C* — 'C*?
is bijective, and the characteristics are nondegenerate at (x°,'(x°). Then, for

any ¢ > 0 by a choice of a sufficiently small neighborhood U of x° and ¢*(x, §)
with its support sufficiently close to C?,

C. QUoIF + e|lulf > [|[FA(x"; wll'(¥), D>, x(v, DIH¢'(x, D)oi(x, D)}ulf

for all ue Cy(U, U X L;) provided C, is sufficiently large.
Expanding a(x, &) pi(x, & pi(x, &) = 0 in Taylor series in (w,y) at
(¥, <&, C{(»)>LX(y)) and noting that a(y, F(y)pi(y, T*(¥)) = O we find that

Fiy; w, )oi(, 00N =0

In particular,

27 PG w, e, 5(x%) =0,

and we may consider that
(28) F{(x*; w, y) ¢ Hom (W*(x°, {}(x%), E,) .

Definition 2.4. Assume that the characteristics of 4 are smooth. We say
that the characteristics are of fiber dimension O if and only if, for each point
x" of M and for each component C* of the characteristics passing over x°, z: C*
— 'C* is bijective.

Proposition 2.3. Assume that the characteristics of A are smooth, of fiber
dimension Q, and nondegenerate, and further that there is r > 0 such that for
each 2 we have, for all sufficiently small 6 > 0,

[[FA(x"; wll'(), D>, x(y, D) |} + Cyllv]f
> —CO v} + " (KEHx), DOv, vy + (LX), Dyv, v)
+ Z{T{(x, D) + R¥*(x; w(l'(y), D), x(y, D))v, v)
for all v e C3(U, WX, C‘(x”))), where L, is an endomorphism of W(x%, {*(x%))
such that {L,v,v> > 0 for all v, Ti is of order 1, Ti*(x*, &) = 0 for all &, and

R(x; w,y) is linear in (w,y). Then, for a sufficiently small neighborhood U of
X0, Q(u) > cllullf for all ue C3(U, U X Ly).

Proof. For simplicity we set p* = pi(x°, {*(x). Clearly

(29 | #'{¢'(x, D)pilx, D)Yuelly < Cliully + Cillul}

where C, may depend on ¢’. Put
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K(x, 8 = |&olx, &7 + 5 ¢ 878 aix, )
+ 0i(x, HEHXY), &)ppi(x, &)

L i, 9F(x0; wli), £, (v, 9)*FH(x0;

_+_
1§

w3, £, 1, O)pi(x, §)
Since the characteristics are nondegenerate,
(30) ((K(x, &) — ¢,|&Du, uy > 0

for a constant c¢,. Therefore, since K(x, §) is of order 1, Theorem 1.4 implies
that

31 (K(x, Dyu, up > eifjuif — Ciiuif .
On the other hand, by Lemmas 2.3 and 2.6 together with Proposition 2.2,

(K(x, Dyu, uy < ¢ljull, + C.Qw)
(32) + X {EH(xY), DYpiei(x, D)pi(x, D)u, p*¢*(x, D)pi(x, D)u) .

Thus, by our assumption,
2P w(&(), Dy, x(v, D))¢*(x, D)pi(x, D)ulf
s
= ; HEH(x®; w<li(y), DY, x(y, D))p*e’(x, D)oi(x, Dyuil* , (by (27))
> 3 (=Co 4| oo (x, D)piix, D)ujj
+ 87X, D) plei(x, D)pi(x, D)u, p*¢*(x, D)pi(x, D)uy
+ A{T*(x, D) + R*(x; w(Z(¥), D,
1y, D)) (x, DYpi(x, D)u, p*o'(x, D)pi(x, D)uy) + 7
> — i ulf + e ((Kx, Dyu,uy — ¢ uily — CIQ(w)
+ {T¢(x, Dyu, uy + y, {(by(29) and (32)) ,
where T{(x,§) = ; oi(x, )(TP(x, §) + RY(x; y(x, H)e'(x, &)p*pi(x, &), and
7 = (L, (XY, DYplo(x, D) pi(x, D)}u, p*{¢*(x, D) pi(x, D)}u>. By choosing
Supp ¢* sufficiently close to C* and U small, we may assume that
(LX), 5% (x, £)0%pi(x, O)u, p*oi(x, E)u> > 0, so that y > —C,i{u’. Hence
by 31),
; 1 FA(x° w(l'3), DD, x (v, D)}¢'(x, D)pi(x, D)}uif + Cy Q)

> o (e, — (¢ + #Duf + {Tix, Dyu, uy .
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Choose 6, and ¢ so small that ¢, — (¢ + 6%¢’) > 0. Then, for constants ¢ > 0
and C > 0 (setting T'.(x, &) = Ti(x, &),

33 2P wlSO), DY, x(y, D)){g'(x, D)pi(x, D)jul + CQw)

> c‘!u’[\; + {T\(x, D)u, uy

for all ue C3(U.U X Ly, provided U is sufficiently small and Supp ¢* is suf-
ficiently close to C*. Now by applying Proposition 2.2 to the left hand side of
{(33) for a sufficiently small choice of ¢, for constants ¢ > 0 and C > 0 (where
¢ is independent of but C is dependent on the choice of ¢*) we find that

COW) > cllully + <Ty(x,D)u,uy .

Since Ty(x, &) = Zj (T¥(x, &) + R*(x; x(x, EN(x, ) p'pi(x, &) and Ti*(x", &)

= 0, T\(x, £)/]€| can be made arbitrarily small by choosing U sufficiently small
and Supp ¢* sufficiently close to C*. Hence for such choice of U and ¢,

= llul < €O,

Definition 2.5. F'(x*; w({'(y), D>, y(y, D)) will be called the localized
operator of 4 at x° for the characteristics C*. Forn = (5, + - -, 75, _,) € R**» Y,
& (n) = F(xX"; 5, - - -, Jon_,) Will be called the indirect symbol of the localized
operator. (We recall w and y are considered as functions of x.)

In order to make the writing easy, we fix 2 once for all and set for
j = 1, s, — 1

(34) Xj(xa E) = wj(x)<cz(y(x))a &> ’ Xj = Xj(xa D) ’
(35) Xn_l-;-j(x’ E) = Xj(x, E) > Xn—1+j = Xn—1+j(x7 D) ’
(36) PG =1, i) = it

Thus we can write

2n -2
37 F' = F(x*, w((¥),D>, 3, D)) = Zl X,
By direct calculation we find that for s, =1, ...,2n — 2
(38) XFX, — X3X, = 2, (0, Dy + % buWX, ,
1 i=1

where c,(x) is a real valued function, skew-symmetric in s,¢, given by,
forj,k=1,.--,n—1,
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cu(x) =0,
(39) Cno14g k(x) = an—1+jwk(-x) (I’l’lOd W) ’
Crorijnotea(X) = Xy LX) — Xp 0,2 (mod £ .
Another way of writing down these functions are as follows:
dw; = L; Cyy 5 xx(y, dx) (mod {LX(y), dx)) ,
dcl = Lv_;xc ‘%‘Cn_“_k n_H.ij(y, d-x) AN Xk(y: d-x) 3 (mOd <Cl(y)’ dx>) s

Js

where {* denotes the differential form {*(y(x)), dx> = 3 Ci(y(x))dx;.
7

3. Study of the characteristic parts

In this section we fix vector spaces W, I, and a linear mapping

(1) g: R %39 g(yp) e Hom (W, V) .
We write

2n—2
(2) glp) = 2; £°7;

where g* € Hom (W, V). U will be as in § 2, T, will denote as in § 2 the pseudo-
differential operators of order j which may change from formulas to formulas,
and X, -+ -, Xs,_, will have the same meaning as in §2. For ue C3(U, W)
we set

(3) gX)u = 3 gXu,

which is in C3(U, V). We are interested in an estimate of the type described
in Proposition 2.3. To this end we apply our results to the case where g(z) =
Fi(x*; ), W = W, £4(x")) and V = E,. Assume that we are given hermitian
metrics on W, V', and set

(4) do(x,8) = g(X(x, E)* g(X(x,8)) .
Lemma 3.1. Foruec CU, W),
lg(Xul? = R dx, D)u, uy
+ 2 3(g"e(1eu(DC). D) + BLOX,)u, u)
[
+ {g(Xu, gh(x)uy + {Tyx, Dyu, u) ,
where h(x) is a C* function, c¢,(x) and b7,(x) are defined in §2 of (38).
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Proof. Clearly, X* = X, + h(x), where h(x) is a C~ function. Thus
g(X)* g(X)u = dy(x, Du + sZL}jLtz**g‘(t’iXs(x, §)[0§)Y ,y(x, E)u
+ g(h(x))* g(’X,)u ;
where Y,; = (1/0)aX (x, §)/0x;, and therefore
g(Xu|f = Z{d(x, D)u, uy + A{g(X)u, g(h(x))uy
+ % 35 {88 0X (x, §)]0§))Y . j(x, D)u, uy .

(Note that 6X,/9¢; is a function of x.) On the other hand, since Y,,(x, &) has
purely imaginary coefficients, we have

A3 {g7g(0X(x, &) [08,)Y , i(x, D)u, u>
= —R Y {878 (0X (x, &) [ DY ;(x, D)u, uy + RLT(x, D)u, u»
=37 3. {g78"{(6X (x, &) /5§))Y ,4(x, D)
— (30X (x, §)/05)Y j(x, D)u, uy + AT o(x, D)u, u)
=37 Y (g X X, — X, X)u, up + A{T(x, D)u, >
= 3% 3, (g X} X, — X}Xu,uy + A{T(x, D)u, u)

=2 ). <gs*g‘ (%csz(x)<C‘(y),D> + bL(0)X ) u, u> + AT (x, DYu, u) ,

(5)

which together with (5) thus implies our formula. q.e.d.
Let V’ be a vector space with a hermitian metric, and assume that we have,
for all  with sufficiently small absolute value, a linear map

8: R 27— gy e Hom (W, V"),

which depends differentiably on 4.
Lemma 3.2. Assume that for an integer d > 1 we have the following:

(1) gs*gt:g(s)*gg (S,t:l,--~,2ﬂ—2),
(i), gp¥el — g(P*g,(p) = 2 h,(p) ,

where h,(y) depends differentiably on 8, and
Gis 3 (5eu(eE"s — grghu u) > oot uf
for all ue W and all sufficiently small @ > 0. Assume further that

(V) {dolx, Ou, ud> > (3, 1 X (x, Huf) .
Then for sufficiently small 8 > Q
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1gXull + Collullf > —Co**3ully + ¢*<{ L"), DYu, uy
+ (L GHX%), Dyu,uy + {(Ti(x, D) + R(x, X))u, u)
for all ue Cx(U, W), where T{(x°, &) = O for all &, R%(x, p) is linear in 5, and

L, e Hom (W, W) such that {(L,u,u) > 0 for all u.
Proof. By Lemma 3.1,

|80 = Ay 0, Dyt iy + T (8085 2 ea@)C0), D

+ 05X w10y + R0, h(BCOMS + (T3, Dy, iy
Thus for 0 < § < 1

lgXulf = 8l g(Xuf + (1 — 8)||g(Xulf
+ (1 — 0)(lg(Xulf — |g,(X)ul)
= (1 — O ||go(X)ull* + ALE4y(x, D) + (1 — 6)(d(x, D)
— Ag,(x, D))u, uy

+ 9 5 (08 + (1 — 9)(e"s — IEDICO), Dy u)
+ AR5, %) + T0(x, D)ut, ) .
Hence

| gXuif + C,ljulf
> RL34,(x, D) + (1 — 8)(dg(x, D)— g (x, DY))u, 1y

+ R Z E_<cst(5gs*g —+ (1 — 5)(gs'g — 85 ga))<C‘(-x),D>u’ Ll>
+ R (R (x, X)u,u> .
By (ii), and (iv),

{(0dy(x, &) + (1 — H(U,(x, 5) Ag,(x, ONu, uy
=00 25, | Xx, Ouf — (1 — 564+ h(X(x, Ou, u) .

For 6 > 0 and § = #¢*4, the right hand side of the above inequality becomes
64 4oy 26| Xs(x, Ou® — (1 — 612Dt < hy(X (s, )u, w)) .
Therefore for sufficiently small 4, by Theorem 1.4 we have

(7) @dg(x,D) + (1 — 8)(dg(x, D) — Ay (x, D))u, up > —C0**4|ully ,
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where § = 21, By (iii); we have for § = §¢+#

2i
> C X0, Dou, uy — 644 |[ul} + (L KEH("), Dou, uy

= (L cutGers + (1 — 0)g"e — e, Dyu, u)

together with (6) and (7)

|g(Xut® + Colull* = cf®{ LG, Dou, uy — 6**cljuli
+ BRx, Xu, > + BT (x, D)u, 1
+ (LGN, Dyu, uy

where T7(x°, &) = g.

Theorem 3.1. Let A be a pseudo-differential operator of order 1 mapping
Cy(M. L) into C3(M, E). Assume that the characteristics of A are smooth, of
fiber dimension Q, and nondegenerate, and further that, for each x* ¢ M and
each component of the characteristics C* passing over x°, the indirect symbol
g(n) of the localized operator of A at x° relative to C* satisfies conditions (i),

(i1)4, and (i), (for an integer d > 1) in Lemma 3.2. Then there is a constant
¢ > 0 such that

| Aulf + [[u|* = clful}

for all ue C*(M, E).

Proof. If g(y) satisfies the conditions in Lemma 3.2 for d > 1, and m is
an integer m > 1, then g(z) satisfies the conditions for dm, so that we may use
the common 4 for the indirect symbols relative to the components C?, .- -, C?,
-+ .. Hence our theorem is an immediate corollary of Proposition 2.3 and
Lemma 3.2. q.e.d. '

We further study the conditions in Lemma 3.2, For g(5) = 3] g%, they are
conditions on gvg* e Hom (W, W). Thus if we have another A(;) e Hom (W, E,)
such that A%A¢ = g%g* for all s, =1, -..,2n — 2, and if g(y) satisfies the
conditions, then so does A(y). g induces a linear mapping g: W ® R ? » E,,
and vice versa, and g and g are related by

gu®e’) = gu (ue W),

where {e‘} is the standard base of R**"2. We impose the hermitian metric on
W & R™"* induced by that of W. Let 4 be the positive semidefinite hermitian
square root of g*g, and k() ¢e Hom (W, W ® R*™?) be defined by 4 as above.
Then (A htu, u”y = (htu, hou'y = (h(u@et), (W Q€)= gu®e), g’ R e*)>
= {g"g'u, u’>, i.e., h'h* = g"g'. Thus we may replace g by h. Moreover

(8) kerg = ker & .
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Hence we may assume without loss of generality that ' = W ® R*™*, and
that g is a positive semidefinite hermitian metric. If g, as in Lemma 3.2 exists,
we may assume also that g,() e Hom (W, W ® R**%), or equivalently g, ¢
Hom (W @ R*™~%, W ® R*"~?%). Then the first condition says that g*g = g¥g,,
i.e., g = vg, where v is a unitary transformation of W @ R**~*. Replacing g,
by vg, we may assume that g, = g.

We first study the conditions in Lemma 3.2 for the case d = 1. Write
8 =g+ 0Or (mod ¢) .
Then (ii), and (iii), are equivalent to
(iD)] gr' + rg" + &r + r'¢* =0,
(i), <—1—c2l(g3*r‘ + rgu, u) < 0
for all nonzero u in W, where ¢, = ¢,,(x°). In order to write these conditions

more concisely, we introduce an automorphism < of Hom (W & R,
W ® R*~%) defined by

(9) FUe)w @ e = (U e, u @ ey
forall u,u’ e Wands,t =1, -..,2n — 2. Then (ii) is equivalent to
(i) g*r + r*g + (g*ry + (r*g =0,

Let J: R*** — R*™? be defined by

In-2

Je) = 3 e .

t=1
Then for r, g ¢ Hom (W & R*** W ® R*"?),
2 eartgiu, 'y = 3 (g ® e), i’ ® )

= T (e ® e, i @ )
=N GFIRQNue),u Qe ,

where I is the identity map of W. This suggests us to introduce a linear mapp-
ing try . Hom (W ® R*™ %, W & R™ %) — Hom (W, W) defined by

(10) {rgu, u> = 3, hu @ e), u’ & e .
Then (iii); can be written as

Ayt (i(g*r + r*)I® 1) > 0.
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Thus we have the following:
Lemma 3.3. Conditions (1), (ii),, (iii), in Lemma 3.2 are satisfied if and
only if we can find r e Hom (W @ R** %, W & R*™™?) such that

() g%+ r'g + (@) + (") =0,
Gy (i + P ©) > 0.

Let V, V, be vector spaces with hermitian metrics. Then we always consider
the vector space Hom (V, V) with a hermitian metric defined by

(r.g> = Trg*r (g, re Hom (V, V) .

The subspace over R of Hom (V, V) consisting of all self-adjoint transforma-
tions of ¥ will be denoted by Her (V, V), so that

dimg (Her (V, V) = (dim, V)? .

t defined by the formula (9) is a hermitian unitary transformation of order 2
of Hom (W ® R*»~*, W ® R**%) and preserves Her (W @ R*\, W @ R*"7?).
We set

(11) S={aecHer (WQ R W®R"; & = a},
(12) St={feHer(W® R™*WQR"?); = —p} .

For a subspace F of V, p, generally denotes the orthogonal projection of V' to
F. We can now rewrite Lemma 3.3 as follows:

Proposition 3.1. Conditions (i), (ii),, (iii), in Lemma 3.2 are satisfied if
and only If there is 8 e §* such that

1) pxlox =0 where K = ker g ,
2) ry(d D) >0.

Proof. Assume that there is r as in Lemma 3.3. Then § = g¥r + r*gisin
§* and satisfies 1) and 2). Conversely, assume that j3 satisfies 1) and 2). Since
8 is hermitian, the condition 1) implies that there is r e Hom (W & R*™%,
W & R*™%) such that § = g*r + r*g. Then this r clearly satisfies (ii);" and
(i), q.e.d.

In order to study these conditions further, we define a linear map (over R)
6: Hom (W @ R, W ® R*™?) — Her (W ® R %, W ® R*™?) by

(13) o(r) = g¥r + r¥g .

ris in Ker # if and only if ir*g is hermitian. Since irfg is zero on Ker g, we
thus have a linear map
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Kerﬁ i Her (Img9 Im g) 3

where Im g denotes the image of g (being hermitian, it is the orthogonal com-
plement of Ker g). It is easy to check that this map is surjective and the kernel
is isomorphic to Hom (W & R**~*, Ker g). Thus

dim, Ker § = (dim¢ Im g)* + 2m(2n — 2) dim, Ker g

(14) . .
= (2n — 2)m)* + (dim, Ker g)* (m = dim,w) .

When V is a vector subspace of W & R**%, re Hom (V, V) can be identified
with an element in Hom (W & R*™~%, W & R**~?), which coincides with r on
V' and is zero on the orthogonal complement of V. Thus we always consider
Hom (V, V) as a subspace of Hom (W & R*~%, W & R %). We denote by r;
the projection to S of S & §4 = Her (W & R*™ %, W @ R*™?). Clearly

rs(h) = 3(h + h) .

Lemma 3.4. (Im (z508)L NS = Her (Ker g, Ker g) N S, where | istaken
in Her (W @ R :, W & R*™ %),
Proof. «in Sisin (Im (rgo8)+ N S if and only if

(15) (r*g + g*r + (r*gy + (@*r),a> =0

for all r ¢ Hom (W & R™ %, W ® R™%). Since {r,qy = {r',q*» and h(rq) =
h(gr), we see easily that the right hand side is 4Z%tr r*ge. Therefore (15) is
satisfied for all  if and only if goo = 0. Since « is hermitian, it follows that the
condition is equivalent to « € Her (Ker g, Ker g).

Lemma 3.5. Imé N $*={y — r°; v « Her (Ker g, Ker g)}+ N §”.

Proof. 1If geImaged N S4 then for any y ¢ Her (Ker g, Ker g),

Ry v — 170 = 2RB, 1) = 2Riryf = 2Ar y(r¥g + g¥1)
= 4Ftr (r*gy) =0 .
Thus the left hand side is contained in the right hand side. We prove the

equality by counting the dimension of both sides. Set @ = Her (Ker g, Ker g)
N S. Then the real dimension of the right hand side is equal to

dim, §* — (dimg Ker g)* + dim, @ .

Since the left hand side is equal to the image by # of Ker 7506, its dimension
is equal to
dim,, (Ker 75 ¢ 6) — dimy (Ker 6)
= dim, (Hom (W @ R**, W ® R***)) — dim, (Im 750 6)
— dimg (Ker §)
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= 2(m2n — 2))* — (dimg § — dim, @) — ((m(2m — 2))

+ (dim,, (Ker g)) (by Lemma 3.4 and (14))
— (m(2n — )y — dim, S) + dim, @ — (dim, Ker g)*
— dimp §* — (dim, Ker g + dim, @ . q.e.d.

For 7 ¢ Her (W ® R™~?, W ® B9, set
(16) C) =tryp(fd ®J) = X iclr® e Hom (W, W) .
Since J* = —J, C(y) is hermitian. 1f H ¢ Her (W, W), then

HT) = (—HQ N)y) = ivr(HQ DU X iy)
= itr(Htry(yd ® 1)) = iKC(p), H) .

Thus

(17 H®T) = KO, Hy  (HeHer (W, W)).
Set

(18) Z=1{8eSC® =0} .

Then by (17), peS? is in Z if and only if (J,H®J) =0 for all
H ¢ Her (W, W). Hence

19 ST=Z@Her W, W)RQJ),

where @ indicates an orthogonal decomposition.
Lemma 3.6. Set G = {y — 7*; v € Her (Ker g, Ker g)}. Then

G=pZD(GN Her (W, W)RJ)) .

Proof. By (19), Z is orthogonal to Her (W, W) & J, so that p;Z is orthogo-
nal to G N (Her (W, W) & J). Let v € G be orthogonal to p,Z. Then v is
orthogonal to Z. Since v is in §4, it is in Her (W ® W) ® J by (19) and hence
inGN (Her (W, W)RJ). q.ed.

Proposition 3.2. Assume that not all ¢, are zero, and define ¥ C
Her (W, W) by

L &Q®J={r—y;reHer(Kerg, Kerg)} N (Her (W, W) XJ) .

Then conditions (i), (ii),, (iii), in Lemma 3.2 are satisfied if and only if there
is a positive definite hermitian form on W orthogonal to % .

Proof. Assume that g e $* satisfies conditions 1) and 2) in Proposition 3.1.
By 1), (B, 1> =<F 7> =—{B,7>= —tryf=0 for all y € Her (Ker g, Ker g),
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so that 8 is orthogonal to G. Thus for He &, {C(B),H) = —iK,HRQJ> =0
(cf. (17)). Hence C(B) = try(if- (I ® J)) is orthogonal to ¥ and is positive
definite by 2). Conversely, assume that % is a positive definite hermitian form
on W and is orthogonal to . Take B, ¢ §* such that C(8,) = 4. Then
P & ®T> = iKC(B,), £ = 0, so that g, is orthogonal to G N (Her (W, W)
&® J). Thus by Lemma 3.5, 8, ¢ G1 + p;Z, where Gt is the orthogonal com-
plement of G in $“. Since p;Z C Z + G*, it follows that 8, e GL + Z. Write
8, = B+ ¢, where Be GL and £ ¢ Z. Then C(8) = C(8) — C(0) = C(8,) = h.
Thus C(8) > 0. Since e G+, for any y € Her (Ker g, Ker g) we have {8, 7> =
3{B,7 — r> = 0. Thus tr 8y = 0 for all y € Her (Ker g, Ker g), and hence g
satisfies condition 2) in Proposition 3.1. q.e.d.

By considering the conditions in Lemma 3.2 for d = 2, we obtain a more
general condition for half-estimate. We can write down these conditions parallel
to Proposition 3.1 as follows:

Proposition 3.3. Conditions (i,) (ii),, (iii), in Lemma 3.2 are satisfied if
and only if there is § e §' such that

1) pxPox =0 where K = ker g ,
2) (U ®) >0.

Proof. Assume that g, satisfies (i), (ii),, and (iii),, Write
g =8+ 0r+ 8&q (mod. &) .
Then (ii), and (iii), are equivalent to
(20) gfr + rig + (gfr + rigy =0,
2D g'q + q*g + r'r + (8¢ + g*g + r*r) =0,
(22)  (itry(0(g*r + r*g) + 6°(8*q + g*g + r*mMU & Du, up > cb|uf’
for all sufficiently small § and all u ¢ W. Set
H, = itry((g*r + r’'e)U ® ), H = itryy((8*q + g*¢ + r*'I ®J)) .
(22) implies that for a sufficiently large real number a, aH, + H, > 0. Set
f=q+ar, g =g+ fg+rir,

Then (i1 @ 7)) > 0 by (22), and e §* by (20) and (21). Moreover,
pxBox = pxr*rpx > 0. Thus p satisfies our conditions. Conversely, as-
sume that there is g ¢ 54 satisfying our conditions. Write px8px = r*r, where
re Hom (Ker g, Ker g). Then px(8 — r*r)pxy = 0, and therefore there is
g ¢ Hom (W @ R*™*, W & R*"?) such that
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g—rr=g% + g*g .
Noting r*g = g*r = 0 since Im g | Ker g, we see easily that g, = g + 6r +
#q satisfies our requirements (20), (21) and (22).
Appendix

Proof of Theorem 1.4. Set (&) = (1 + |£P*. Expanding J(x, & + (&)
in Taylor’s series in z, multiplying by bt g(z)?, integrating over R™ in z, and
noting that g(z) is an even function, we find that

(13) J(x3 5) = J1(x7 s) - (aZJ(x: g)/3513$k)ajk<$> + R(xs 5) s

where
(14) I(x, €) = f Ix, € + &gz

and R(x, &) is of order I — 2. Set
(15) 68 =708, nwd =749,

where A indicates Fourier transform in the space variables. Then by applying
a change of variables z = {(&>7¥¢ — &) to (13),

(16) 18 = [1G 98 — 9y

In view of (13) we are interested in estimatingf(rl(x — &), a(pydsdy

from below. However, instead of y, we first consider

7008 = {100 08K + D7HE — & — PKE + 7
B(EHE — ONE L
= [[10€ + K&Mee + i ~ )
&+ > MRREMz

and then study the difference y, — 7,.
From the first defining formula of 7,(y, &), it follows that

(a7

(18) f $rlx — €, U8, d(y))Hdédy = f I, Du(x), u(x)pdxdl

where #,(§) = g(<&>~H¢ — EN<E> (). Therefore by our assumption,
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(19) 2 [t — & 9@, a)>dsdy 2 0.
By (2) and the second defining formula of 7,(y, & in (17),

1 & — 1y &) = f s & + 20
Hg(E + O Hz D — P E + D MEM — g(D))g(D)dz .

(20)

Note that

G+ DO =1 — a7 D + R0, d)
[Ra.(x, 5)[ S Cu<$>_2<x>|a+2l+4 ,

where (£, y) is the inner product of & and y. Therefore

8((E + M — PIE + VO™ — 8(2)
= —(n/HETHE 8@ — GLETHE, Nz + & 7H;)08/07;
+ HKE 108 /02,02, + Si(x, &, 2)
18:(x, 6, 2| < CLET I *2H*

for a sufficiently large k. Since

76 &+ 2 = 1(x, &) + (&EWor(y, 8/, + Sy, §:2)
182005 &, 2)| < CuK &K >~

it follows then by (20) that

1) = 1 © = bl KO 1 [ @e/oz0m80d
~ 1 <@ D [/ + 4 [ 2,608/ 02)d2)
— 101tz 91680 [ 28 (08/02)dz + SG. &
= 370 OO nb e + T & + S &
where [S(z, )| < Cx<E ¥ (3>, T(x, §) is of order [ — 1, and
1) BT (s, O > = O
for all u. The above equations together with (13), (18) and (19) therefore give

R (x, Dyu, u> > — BLLAx, DYu, > + RLT(x, D)u, uy + ZS(x, DYu, uy .
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Since #{T(x, D)u, u> = 0 we can apply our argument to {T(x, D)u, uy. Note
that we have not used the hermitian assumption of J(x, &) except for getting
(21). Since T(x,&) is of order I — 1 we find that |Z{T(x, D)u, uy| >
+R{S'(x, D)u, uy where S'(x,&) is of order <1 — 2. This completes the
proof of our theorem.
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